Wednesday, October 4, 2017

Effective design for manufacturing requires a systems perspective during the design phase

Design for manufacturing is changing how companies approach medical device manufacturing. This is the first of a three-part series about design for manufacturing and its effect on different teams in the product development process.

Adopting a design for manufacturing (DFM) approach to product design influences the work of each member of the product development team. For best results, a systems perspective during the design phase is critical.

All product designs start with the technical team. This group typically includes research and development, design and engineering, manufacturing, quality, and supplier quality. The team’s goal is to deliver an accurate, measurable and manufacturable CAD model and drawings.

Metrology planning, manufacturing and post-processing are three key methods to achieve this goal, and have a critical effect on DFM.

Metrology planning
Metrology planning defines how features will be measured and why specific methods are chosen. There are four key elements to have in place before any metrology planning session:

1.       A fully defined CAD model
2.       Tolerance analyses for all interfaces of the component and other components it touches
3.       Functional map showing the other components and how the designed product effects them
4.       An Excel file with each feature listed, including its nominal dimension and tolerance

To start this planning process, the full technical team reviews the CAD model and works through the function of the component. This includes not only what the product does, but also how it affects the components it touches. This analysis should entail the datum reference schemes for each component and the associated tolerance analysis justification. 

Once the team understands the design intent and datum reference scheme of the component, it’s time to discuss the optimal way to measure each feature.

The team must balance inspection cost (driven by speed) and test method validation requirements (GR&R) to take advantage of DFM. This starts by determining the best way to fixture the part, and then moves through the Excel file: critical features first, then major, minor and finally negligible. Critical features will need to pass gauge studies and therefore require metrology capable of passing those studies, while negligible features do not need this level of scrutiny.

Manufacturing review
Manufacturing review follows metrology planning. This review examines each feature from the metrology Excel grid – from critical to negligible – to determine the level of manufacturing risk.

If any concerns are identified during this review, they should be communicated to the design engineer. Once the engineer has re-designed those areas of concern there is a final manufacturing review to confirm the risk profile.

Post-processing review
The last step for the technical team is reviewing any post-processing procedures and their impact on DFM. It is imperative for the design engineer to be acquainted with the design rules for each of the post-processes.

There are a variety of procedures to be considered, both large and small. Color anodizing is one example. One color is less expensive than two because of the manual labor required to mask two colors. Two colors can also be more expensive because of the narrow processing range to get those colors. These details can have a big impact on cost and time to create a final product, which influence DFM.

If you work with a manufacturing partner, it’s important to understand how their methods influence the manufacturing process and align with a DFM approach. By taking a systems perspective, design engineers can better meet design intent while minimizing cost and ensuring an on-time project launch.


Contact Lowell at (763) 425-3355 or requestinfo@lowellinc.com to learn more about our DFM capabilities to improve time to market.

Monday, August 14, 2017

OMTEC 2017: Three takeaways for medical device manufacturing

More than 1,000 people gathered for this year’s Orthopaedic Manufacturing & Technology Exposition and Conference, to learn about the latest solutions and the future of the orthopaedic industry.

As we walked around the show, attended speaker sessions and met other attendees, three key themes emerged: value-based care, additive manufacturing and design for manufacturing. Here’s how we see these impacting medical devices today and in the future.

Takeaway #1: Value-based care drives changes to the manufacturing process.

OMTEC’s keynote address featured a panel of experts who weighed in on a range of topics, including value-based care. As this approach continues to be in focus, medical device companies are more closely examining their roles in patient treatments.

Value-based care is most often thought of from the patient and care setting perspective. At Lowell, we’ve seen this change begin to affect device manufacturing too.

Data-driven decisions are changing the landscape of relationships between device providers and manufacturers. Companies actively seek new partnerships or consolidate vendors to create devices that work better and take less time to produce. With the ultimate goal to reduce error events and improve patient outcomes, reducing time to market through approaches like GD&T is also important to the decision-making process.

Takeaway #2: Additive manufacturing continues to make gains.

Additive manufacturing had a big presence at OMTEC, highlighting a number of benefits including flexibility, speed, small-batch production and surfacing.

As the number of successful, additive-manufactured device launches keeps growing, we see new options to pair additive with traditional machining. Tolerances are one example.

Traditional machining can often achieve tighter tolerances than additive manufacturing, thanks to the precise nature of these machines. A near net component created by additive can be finished on traditional machines to take advantage of each process’ strengths and achieve a better result.

Takeaway #3: Design for manufacturing expands its influence.

Design for manufacturing, or DFM, is growing more influential across device design and manufacturing. About 50 OMTEC attendees joined Lowell’s session, “Data Driven Design for Manufacturability – From Validation to PPAP,” to learn more about this trending topic.

DFM is focused on designing for cost, and limiting critical features is one of the best ways to reduce costs in the design and manufacturing process. Critical feature confirmation ideally starts at the earliest design phase, to streamline future manufacturing and inspection processes.

If you weren’t able to attend OMTEC, check out this SlideShare of Lowell’s presentation, or contact us at requestinfo@lowellinc.com to learn more.

Tuesday, August 8, 2017

An Interview with Lowell Quality Assurance Manager Alejandro Romero

To expand its expertise in quality assurance and metrology for complex medical devices, Lowell recently added Alejandro Romero as quality assurance manager.

Alejandro brings more than 20 years of experience to the role, with deep knowledge of test method validation; process, product and tool validation; measurement system analysis; exploratory data analysis; geometric dimensioning and tolerancing; and multi-sensor CMMs.

What is your background in metrology?
Before starting at Lowell, I worked for Vention Medical, a medical device manufacturer, where I was part of the Quality Corporate Group. I held the subject matter expert role in metrology, supporting the seven device manufacturing services facilities in the USA, Puerto Rico, Costa Rica and Ireland. I helped design and implement a metrology platform that standardized the test methods in order to provide portability and efficiency.

Prior to Vention Medical, I worked for SMC Inc. East Coast, where I was the senior metrologist. I mainly focused on supporting the engineering and design and development teams with metrology requirements, statistical analysis and the development of robust test methods.

How are GD&T and metrology influencing quality assurance?
Any human activity progresses as fast as tools do – quality assurance it is not an exception. The acceptance of system solutions for quality management and compliance with the ISO 13485 and 9000 series of standards means that many companies have to face concepts such as uncertainty, calibration and metrological traceability.

Coordinate metrology and GD&T provide a scientific basis for carrying out measurements of 3D geometric objects. The accuracy and realization time are matched to the manufacturing rhythm. Because of new technologies and scientific developments, the scope of applications of these systems is constantly growing and measurement accuracy is increasing.

It is important to note that just a few decades ago, the inspection capabilities were dissociated. It was common to find a multi-step inspection that was composed of results from contact-based devices (CMM Tactile/Contact), optical (CMM Optical) devices and laser technology, among others tools. This created long inspection times and excessive handling of the product. The modern multi-sensor machines drastically reduce the inspection time since they provide the possibility of different sensors working simultaneously under the same datum reference frame setup.

Design for manufacturing and additive manufacturing are two methods defining the future of medical device manufacturing. How are you seeing these impact quality assurance?
A basic principle states that the manufacturing process dictates the final product’s risk level, inherent to such process. Additive manufacturing – which many specialists characterize as the first revolution of the 21st century! – will certainly force quality assurance teams to adjust the traditional techniques or, in some cases, even develop a completely new approach. Unlike subtractive manufacturing methods that start with a solid block of material and then cut away the excess to create a finished part, additive manufacturing builds up a part (or features onto parts) layer by layer from geometry described in a 3D design model.

The DFM (design for manufacturing) approach’s focus is to design for lower cost. The cost is driven by time, so the design must minimize the time required to not just machine the part, but also minimize the setup time of the CNC machine, NC programming, fixturing and many other activities that are dependent on the complexity and size of the part. It’s important to remember that this method requires a well-defined strategy that unifies the technical, commercial and regulatory goals.

What makes Lowell’s approach to quality assurance unique?
We reach and exceed our customers’ expectations through experienced and well-trained personnel and state-of-the-art test equipment, manufacturing protocols, opportune preventive maintenance, and calibration and gage management. These are integrated under the umbrella of precise and flexible manufacturing cells. The addition of a world-class metrology control room and new CMMs reinforce the Lowell Inc. commitment to precision as our priority.



What do you find most interesting about your work?

This line of expertise evolves constantly and its interaction with the rest of the quality system always demands our complete commitment to maintain a critical, proactive attitude all the time. Every product implies a challenge and the company mission statement – “Our purpose is to manufacture value into all that we do” – inspires me to work in harmony with it.

Wednesday, June 7, 2017

Design for manufacturability redefines med device measurement and validation

In medical device development, design for manufacturability (DFM) is ultimately about designing for cost. The process involves every member of the product development team – technical, commercial and regulatory – to successfully deliver a product that’s not only easy to manufacture, but profitable as well.

Every critical feature must be measured and validated as a design moves through production. Streamlining the number of critical features in the initial design, as part of DFM, improves this process for everyone involved.

Experience shows it also increases the likelihood of a successful product launch.

Lowell’s Vice President of Operations, Edward Jaeck, will share more about implementing DFM during OMTEC  this June 13-15 in Chicago. His June 14 session, “Data Driven Design for Manufacturability –From Validation to PPAP,” explores how DFM affects and improves the steps of a product’s development.

DFM starts with the technical team
The technical team includes design and quality engineers, R&D and manufacturing. Success for this team means creating a complete and accurate CAD model and drawing set that can be measured and manufactured.

Reducing the number of critical features is one of the best ways to implement DFM, and critical feature confirmation (CFC) is a leading method to achieve this goal. This approach uses design of experiments to test design requirements against key design inputs, to define which features are critical.

CFC, partnered with profile tolerancing, simplifies a drawing and communicates key data points. It also helps the commercial and regulatory teams in developing costs and inspecting, measuring and validating each feature of a device.

The commercial team’s role in DFM
Commercial team roles include sourcing, commodity, purchasing and planning. For a successful product launch, these team members need to generate an accurate parametric cost model that takes into account “what-if” scenarios.

One series of “what-if” questions centers on critical features and how design changes may impact the bottom line.

Critical features often cost more than non-critical ones, and reducing the critical feature count helps drive down overall production costs. Understanding and examining the cost impact of these features are essential functions for DFM as it strives to balance expenses in production.

How DFM affects the regulatory team
While the FDA and EU establish device requirements, it is up to individual companies to define their approach to meeting these requirements.

Measurement and validation are built into the DFM process. With key data easily accessible, regulatory teams can more quickly review and approve designs against drawings, accelerating this vital step of product development.

To register for OMTEC and Lowell’s presentation, visit www.omtecexpo.com. For a meeting at the show, email phil.allen@lowellinc.com.

Tuesday, March 7, 2017

Streamlined dimensioning data shows potential savings of 826 minutes on inspection process.

Data points and dimensions are critical in device design and development, but can also overwhelm the inspection process. Keeping data in balance is a tightrope medical device manufacturers and companies have to walk.

Inspection is one of the essential processes that’s slowed down by too many data points. Cluttered designs are time-consuming to program, machine and inspect. This issue is further magnified if the original drawings become part of the design history file for later use in product line extensions and product enhancements.

The entire programming, prototyping and inspection process timeline can be simplified through profile dimensioning, as part of Geometric Dimensioning and Tolerancing (GD&T), to remove unnecessary data points.

To test how streamlined the process can be, Lowell compared linear dimensioning with profile dimensioning on a cervical plate for a customer.

Across seven areas – including dimension drawing, coordinate measuring machine (CMM) programming, inspection reporting and dimensional inspection – profile dimensioning took 419 minutes. This was less than a third the time of linear +/- dimensioning, which took 1,245 minutes.

Choosing the right data points keeps product development efficient by focusing only on the dimensions and features that are critical to a design. By removing what’s unnecessary, the entire process is less complicated.

To arrive at the critical data points for profile dimensioning, Lowell works with a customer’s design team. Once they fully understand the part’s intended use and design, Lowell’s team can run a design of experiments and confirm features that are deemed to be critical. This critical feature confirmation (CFC) assists the engineer in the selection of features that are truly critical to a product’s design.

Weeding out critical from non-critical features saves time throughout the development, inspection and final production stages. Through the CFC process, the customer has a final device that functions as designed and isn’t caught in an endless and lengthy cycle of inspections and revisions.

Contact Lowell today to learn how profile dimensioning can improve inspection time on your next product. To download our White Paper on Profile Tolerancing click here.






How custom tooling quickens a device’s time to market and unlocks machining potential

CNC machines are the backbone of the precision machining environment, thanks to their precision and ability to manufacture intricate forms and features. Custom tooling is essential to fully unlock the potential of these machines and their technology.

A longtime expert in manufacturing complex medical devices, Lowell develops its own custom tooling to further enhance the CNC machines’ capabilities. This also ensures our production process can meet customers’ design intent and quickens time to market for their devices. Here are three key findings from this proven process.

1.       The quality of the tools affects the quality of the devices. Custom tooling improves both.

Often behind the scenes, tools touch every part of a product’s fabrication. They directly affect the quality of a device we manufacture for customers. By bringing the design and creation of custom tooling in house, we avoid the breakage and inconsistency problems we had with outsourced tools. We put our custom tools through the same rigorous design process and programming as our customers’ device components. This creates better and more reliable tools, which lead to better parts for our customers.

2.       By creating your own tools in-house, customers can get their parts to market faster.

By fabricating tooling in-house, we can build custom tools for specific applications and make any needed adjustments in a matter of hours. Before developing our in-house process, timelines were impacted by how quickly we could get a custom tool delivered. If internal testing showed the tool was wrong or needed modifications, it could take an extra week or longer to fix. Expanding our in-house capabilities is more efficient. This helps improve turnaround time for our customers, which ultimately impacts time to market.

3.       When tools are designed for a specific purpose, they lead to better results.

Not all projects require custom tooling solutions, but especially complex projects typically do. By creating tools for specific device needs, we can ensure that each piece meets the design specifications to deliver results for our customers. It also gives us flexibility to create tools from different materials – for example, carbide, tungsten or steel – based on the manufacturing process.

With custom tooling created in house, Lowell accelerates the product development process. To download our White Paper click here.







Tuesday, December 6, 2016

Medical device design trend: Combining additive manufacturing and traditional machining for optimal product development

Additive manufacturing is cited as the new frontier for creating medical device components, with design flexibility that goes above and beyond what traditional machining typically offers.

Across the medical device industry, companies are increasingly adopting this technology in the search for faster product development cycles.

But additive manufacturing and traditional machining have different strengths that can’t be easily duplicated by the other. To take advantage of the best of each process, companies are beginning to connect these techniques to improve product development.

How traditional machining enhances additive manufacturing

Many companies turn to additive manufacturing when there is a feature or feature set that can’t easily be conventionally machined. It’s also ideal for custom builds or when low quantities of components are needed. Traditional machining is often best suited and more cost-effective when components are being made in higher production numbers.

Another use for additive manufacturing is building near net components. This is where traditional machining can best support additive manufacturing – by transforming these components into finished pieces.

For example, a product may be created via additive manufacturing with tolerances of ±0.01 inches, but the original design intent may require final tolerances of ±0.001 inches. That level of detail and finishing, to date, is best completed by traditional machining techniques.

Traditional machining is also ideal for finishing components that require different surface textures. Once the texture is created via additive manufacturing, machines can take over to cut flat surfaces, windows, corners and edges to precise measurements that meet the design intent.

This combined approach is an innovative trend for component design and fabrication, and will continue to grow with the widespread adoption of additive manufacturing. Talk to the team a Lowell to determine if this approach is right for your device.